Ambipolar Heating of Magnetars
نویسندگان
چکیده
Abstract Magnetars, neutron stars thought to be with ultrastrong magnetic fields of 10 14–15 G, are observed much hotter than ordinary pulsars ∼10 12 and additional heating sources required. One possibility is by the ambipolar diffusion in stellar core. This scenario examined calculating models using relativistic thermal evolutionary code without making isothermal approximation. The results show that this can consistent most magnetar temperature data.
منابع مشابه
Cooling of magnetars with internal layer heating
We model thermal evolution of magnetars with a phenomenological heat source in a spherical internal layer and compare the results with observations of persistent thermal radiation from magnetars. We show that the heat source should be located in the outer magnetar’s crust, at densities ρ 5 × 1011 g cm−3, and the heating rate should be ∼ 1020 erg cm−3 s−1. Heating deeper layers is extremely inef...
متن کاملAmbipolar Drift Heating in Turbulent Molecular Clouds
Although thermal pressure is unimportant dynamically in most molecular gas, the temperature is an important diagnostic of dynamical processes and physical conditions. This is the first of two papers on thermal equilibrium in molecular clouds. We present calculations of frictional heating by ion-neutral (or ambipolar) drift in three–dimensional simulations of turbulent, magnetized molecular clou...
متن کاملHeating and cooling of magnetars with accreted envelopes
We study the thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in an internal layer. We focus on the effect of magnetized (B 1014 G) non-accreted and accreted outermost envelopes composed of different elements, from iron to hydrogen or helium. We discuss a combined effect of thermal conduction and neutrino emission in the outer neutron sta...
متن کاملMagnetars as cooling neutron stars with internal heating
We study thermal structure and evolution of magnetars as cooling neutron stars with a phenomenological heat source in a spherical internal layer. We explore the location of this layer as well as the heating rate that could explain high observable thermal luminosities of magnetars and would be consistent with the energy budget of neutron stars. We conclude that the heat source should be located ...
متن کاملAnomalous ion heating from ambipolar-constrained magnetic fluctuation-induced transport
A kinetic theory for the anomalous heating of ions from energy stored in magnetic turbulence is presented. Imposing self-consistency through the constitutive relations between particle distributions and fields, a turbulent Kirchhoff’s Law is derived that expresses a direct connection between rates of ion heating and electron thermal transport. This connection arises from the kinematics of elect...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Astrophysical Journal
سال: 2023
ISSN: ['2041-8213', '2041-8205']
DOI: https://doi.org/10.3847/1538-4357/acbd38